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Abstract

We investigate a mathematical model describing the bilinear interlayer
exchange coupling (IEC) of ferromagnets through spacers. We propose
an extension in the case of the Maxwell system of the results obtained in
Hamdache K and Tilioua M (2004 SIAM J. Appl. Math. 64 1077–97). The
model couples the Landau–Lifshitz–Gilbert (LLG) equations with the Maxwell
system. The Hoffmann interfacial boundary condition is considered to take into
account bilinear IEC. The behavior of the electromagnetic field in the two cases
of a thin and large nonmagnetic spacer is discussed. For example we obtain
that the magnetic field in the nonmagnetic spacer vanishes in the case of a
thin spacer. However the electric field depends explicitly on the initial data.
Various other convergence results are also given.

PACS number: 75.70.−i
Mathematics Subject Classification: 78A25, 35Q60, 35B40

1. Introduction

In this work we deal with a mathematical model arising in the theory of the IEC for ferromagnets
through spacers. For the theory and physical interests we may find, for example in [6, 10],
and the references therein, many details and explanations.

The model considered in [5] is given by the LLG equation coupled with the magnetostatic
approximation of the electromagnetic field. In this paper we shall extend in the case of the
Maxwell system, the results obtained in [5].

Let us first describe the bilinear IEC model equations. We consider B ⊂ R2 a bounded
and regular open set representing the cross section of the cylinder � = B × (−1, 1) of R3.
The generic point of R3 is denoted by x = (x̂, x3) with x̂ = (x1, x2) ∈ B. We assume that a
ferromagnetic material occupies the domains �−

ε = B × (−1,−ε) and �+
ε = B × (ε, 1)

separated by a spacer layer of nonmagnetic but electrically non-conductive material of
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Figure 1. Schematic of a multilayer: �−
ε and �+

ε are ferromagnetic material (FM). �0
ε is a

non-magnetic material (NM).

thickness 2ε > 0 occupying the domain �0
ε = B × (−ε, ε) (see figure 1). In what follow, S2

represents the unit sphere of R3, and we set �ε = �−
ε ∪ �+

ε . The magnetization field of the
ferromagnetic material which belongs to S2 almost everywhere, is denoted by M(t, x). Its
evolution is governed by the LLG equations see [1, 3, 9] for example. We have⎧⎨⎩

1

1 + α2
(∂tM − αM × ∂tM) = −M × H(M) in R+ × �ε,

M(0, x) = M0(x) in �ε, ∂nM = 0 on ∂�ε,

(1)

where the symbol × denotes the vector cross product in R3. The constant α represents the
damping parameter. The effective magnetic field H depends on M and is given by

H(M) = div(A grad M) + H, (2)

where A is the exchange variable coefficient satisfying the usual ellipticity condition in �ε and
the second-order partial differential operator corresponds to the magnetic excitation associated
with the exchange energy. The last term is the magnetic field. It satisfies with the electric field
E the Maxwell equations in R3

−1 = R2 × (−1, +∞). For an absorbing medium, we have⎧⎪⎨⎪⎩
η∂tE + σE − curl H = 0

μ0∂tH + curl E = −∂tM

E(0, ·) = E0(·), H(0, ·) = H0(·),
(3)

where μ0 is the vacuum permeability (for simplicity we assume that μ0 is equal to 1 but its
defined value is 4π × 10−7 H m−1 in SI-units), η(x) the permittivity function which takes
two values η1 > 0 in �ε and η2 > 0 in R3

−1\�ε. The conductivity function σ satisfies
σ(x) � σ1 � 0 in �ε and σ(x) = 0 in R3

−1\�ε. These equations are supplemented with
appropriate transmission boundary conditions, see section 3.1.

Note that for the sake of simplicity, the bulk uniaxial anisotropy field, generally taken linear
in M, is not considered in (2) since it only induces more computations and has no mathematical
influence on the results we obtain. Recall that its expression is Hu = Ku(M − (M · U)U)

where U is the easy axis (fixed vector of R3) and Ku is a constant.
To take into account the bilinear IEC, equations (1) are supplemented with the so-called

Hoffmann interlayer exchange coupling law [7, 8], which can be written as

M(±ε) ×
(

∓ A
∂M(±ε)

∂x3
− JM(∓ε)

)
= 0. (4)

2
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This condition couples the ferromagnetic layers of the domains �+
ε and �−

ε . The constant J

is the interlayer exchange coupling constant, which may depend on the thickness 2ε of the
nonmagnetic spacer.

We define the energy

E(t) =
∫

�ε

A| grad M|2 dx +
∫

R3
−1

(η|E|2 + |H |2) dx − J

∫
B

M(−ε)M(ε) dx̂. (5)

The following energy estimate holds.

Lemma 1.1. If (M,E,H) is a solution of the problem (1)–(4) then, it satisfies, at least
formally, the energy estimate

d

dt
E(t) + 2

∫
�ε

σ |E|2 dx +
2α

1 + α2

∫
�ε

|∂tM|2 dx = 0. (6)

Proof. The techniques to obtain (6) are analogous to those used in [4, 5] and [11]. We rewrite
the LLG equation (1) in the form

(α∂tM − (1 + α2)H) = αM × (α∂tM − (1 + α2)H) − (1 + α2)H. (7)

Multiplying (7) by (α∂tM − (1 + α2)H) and using the saturation constraint |M|2 = 1 a.e.
yields to

α

1 + α2
|∂tM|2 = H · ∂tM. (8)

Integrating (8) on �ε, the right-hand side of (8) becomes∫
�ε

H · ∂tM dx = −
∫

�ε

Aij ∂iM∂j (∂tM) dx +
∫

�ε

H · ∂tM dx +
∫

∂�ε

∂nM∂tM dσ. (9)

To convert the two last terms of the right-hand side of (9), we test the first equation of (3) by
E, the second by H and make use of the Hoffmann boundary conditions (4). This allows us to
get (6). �

The content of this paper is the following. In section 2, we give an existence result of
global weak solutions to the coupled problem (1)–(3) with Hoffmann interfacial boundary
condition (4).

Section 3 deals with the asymptotic behavior of solutions when the thickness parameter
ε tends either to 0 (thin nonmagnetic spacer) or 1 (large nonmagnetic spacer). The main
ingredients of our arguments are some a priori estimates on the solutions and passing to the
limit in equations in the sense of distributions. We note that the limiting behavior of the
magnetization field obtained in [5] remains valid, so we are interested only in the behavior
of the electromagnetic field. We sometimes omit to write both the LLG equations and the
Hoffmann interfacial boundary conditions coupling the magnetization at the interfaces. Let
us specify the results obtained. We first introduce the changes of variables which transform
the domains �±

ε and �0
ε into domains which are independent of ε. We then give the rescaled

system. In the case of a thin nonmagnetic spacer we assume that the interlayer exchange
constant J is independent of ε. We pass to the limit in the Maxwell system, compatibility
and transmission conditions. Depending on the infinite slab considered we show for example
that in the slab R+ × S0 the magnetic field vanishes but the electric field is characterized by
an explicit formula. Convergence results for other slabs are given. In the case of a large
nonmagnetic spacer we show, for example by passing to the limit in the slab R+ × S±, that the
magnetic and electric fields depend explicitly on the magnetization and initial electric fields,
respectively. Results for other slabs are given.
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Throughout, we use the following notations. L2(�) = (L2(�))3 and H1(�) = (H 1(�))3

are the usual Hilbert spaces equipped with the norm | · | and ‖ · ‖, respectively. The same letter
C denotes various positive constant which are all independent of ε. χ(ω) will represent the
characteristic function of ω. We make use of the following differential operators:{

d̂iv g = ∂xg + ∂yg, ĉurl g = ∂xg2 + ∂yg1

ĝrad f = (∂xf, ∂yf, 0), ĉurlf = (∂yf,−∂xf, 0),

where f is a scalar function and g is a vectorial one. We set (u1, u2, u3) to represent the
canonical basis of R3.

2. Global existence of weak solutions

Before stating global existence result let us recall the definition of weak solutions to the
system (1)–(4).

Definition 2.1. Let T > 0 and M0 in H1(�ε), |M0| = 1 a.e. in �ε, (M,E,H) is called a
weak solution to the system (1)–(4) if

(1) M ∈ H1((0, T ) × �ε), |M| = 1 a.e., and M(0, ·) = M0 in the sense of traces.

(2) E ∈ L2
(
0, T ; L2(R3

−1

)) ∩ L∞(
0, T ; L2(R3

−1

))
and H ∈ L∞(0, T ; L2(R3

−1)).

(3) M satisfies (1) and (E,H) satisfies (3) in the sense of distributions.

(4) For all t ∈ [0, T ], the energy estimate (6) holds.

We consider an initial distribution (M0, E0,H0) satisfying{
M0 ∈ H1(�ε), |M0(x)|2 = 1 almost everywhere in �ε,

E0 ∈ L2(R3
−1

)
, H0 ∈ L2(R3

−1

) (10)

then we have the following global existence result

Theorem 2.1. There exists a global weak solution (M,E,H) to the problem (1)–(4) such that

• |M(t, x)|2 = 1 almost everywhere in R+ × �ε,

• M ∈ L∞(R+; H1(�ε)), ∂tM ∈ L2(R+; L2(�ε)),

• E ∈ L2
(
R+; L2(R3

−1

)) ∩ L∞(
R+; L2(R3

−1

))
,

• H ∈ L∞(
R+; L2(R3

−1

))
.

Moreover (E,H) satisfies the Maxwell system (3) and the energy estimate (6) holds.

Proof. We refer to Visintin [12] and Alouges–Soyeur [2] for a classical proof of the global
existence of solutions. In our model the main difference is related to the coupling with the
Maxwell system and the Hoffmann boundary condition satisfied by the magnetization. The
proof follows almost exactly the proofs in [4, 5]. �
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Figure 2. Fixed domain.

3. Convergences

The nonmagnetic spacer occupies the domain �0
ε . It is convenient first to introduce the

following change of variables:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z = x3, if x3 � 1

z = 1

2(1 − ε)
(x3 + 1 − 2ε) ∈

[
1

2
, 1

]
, if ε � x3 � 1

z = 1

2ε
x3 ∈

[
− 1

2
,

1

2

]
, if −ε � x3 � ε

z = 1

2(1 − ε)
(x3 − 1 + 2ε) ∈

[
− 1,−1

2

]
, if −1 � x3 � −ε.

(11)

We set

G+ = B × (
1
2 , 1

)
, G− = B × (−1,− 1

2

)
,

G0 = B × (− 1
2 , 1

2

)
, G = G+ ∪ G−.

(12)

A schematic representation of the fixed domain is provided in figure 2.
We define the new function mε by

mε(t, x̂, z) =
{

M(t, x̂, 2(1 − ε)z + 2ε − 1) in R+ × G+

M(t, x̂, 2(1 − ε)z − 2ε + 1) in R+ × G− (13)

and the rescaled exchange coefficient aε by

aε(x̂, z) =
{

A(x̂, 2(1 − ε)z + 2ε − 1) in G+

A(x̂, 2(1 − ε)z − 2ε + 1) in G−.
(14)

We assume that A ∈ L∞(B,C0([−1, 1])). Note that aε satisfies the usual ellipticity condition.
We also introduce the slabs of R3

−1,{
S− = R2 × (−1,−1/2), S0 = R2 × (−1/2, 1/2), S+ = R2 × (1/2, 1),

S∞ = R2 × (1,∞) and S+,∞ = R2 × (1/2,∞), S−,∞ = R2 × (−1,∞)
(15)

5
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and for (t, x̂, z) ∈ R+ × R3
−1 the function eε

eε(t, x̂, z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E(t, x̂, z), if z � 1

E(t, x̂, 2(1 − ε)z + 2ε − 1), if 1
2 � z � 1,

E(t, x̂, 2εz), if − 1
2 � z � 1

2 ,

E(t, x̂, 2(1 − ε)z − 2ε + 1), if −1 � z � − 1
2 .

(16)

Similarly we introduce the rescaled magnetic field hε.

3.1. Rescaled system

The rescaled LLG equations are

∂tm
ε − αmε × ∂tm

ε = −(1 + α2)mε × Hε(mε), (17)

where

Hε(mε) = d̂iv(aεĝrad mε) +
1

4(1 − ε)2
∂z(a

ε∂zm
ε) + hε.

The Hoffmann interfacial boundary condition (4) takes the form

mε(±1/2) ×
(

∓ aε

2(1 − ε)
∂zm

ε(±1/2) − Jmε(∓1/2)

)
= 0. (18)

In order to write the rescaled Maxwell system we introduce the function ζ ε(z) defined by

ζ ε(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if z � 1

1

2(1 − ε)
, if −1 � z � −1

2
or

1

2
< z < 1

1

2ε
, if −1

2
� z � 1

2
.

(19)

In R+ × R3
−1, the Maxwell system becomes by using the change of variables (11) and the

function ζ ε⎧⎪⎨⎪⎩
∂t (η

εeε) − ĉurl(hε · u3) − (ĉurl hε)u3 + ζ ε(z)∂z(h
ε × u3) + σ εeε = 0

∂t (h
ε + χ(G)mε) + ĉurl(eε · u3) + (ĉurl eε)u3 − ζ ε(z)∂z(e

ε × u3) = 0

eε(0) = eε
0; hε(0) = hε

0

(20)

with the following compatibility conditions{
∂t d̂iv(ηεêε) + ζ ε(z)∂t∂z(η

εeε · u3) + d̂iv(σ εêε) + ζ ε(z)∂z(σ
εeε · u3) = 0

d̂iv(ĥε + χ(G)m̂ε) + ∂z(h
ε · u3 + χ(G)mε · u3) = 0.

(21)

To find a solution to a specific electromagnetic problem, the Maxwell equations should be
supplemented with a transmission boundary conditions associated with a considered domain.
Formally, for two mediums i and j , corresponding to the disjoint domains �i and �j such that
∂�i ∩∂�j = �ij 	= ∅ we have n×(Ei −Ej) = 0; n×(Hi −Hj) = Jsurf; n ·(Di −Dj) = ρsurf

and n · (Bi −Bj) = 0, where n is the normal on �ij pointing from �j to �i . Jsurf is the surface
electric density and ρsurf is the surface charge density. In our case, we write for the electric
field ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2ε
eε(−1/2+) × u3 = 1

2(1 − ε)
eε(−1/2−) × u3

1

2(1 − ε)
eε(1/2+) × u3 = 1

2ε
eε(1/2−) × u3

eε(1+) × u3 = 1

2(1 − ε)
eε(1−) × u3

(22)
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and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2ε
eε(−1/2+) · u3 = 1

2(1 − ε)
eε(−1/2−) · u3

1

2(1 − ε)
eε(1/2+) · u3 = 1

2ε
eε(1/2−) · u3

eε(1+) · u3 = 1

2(1 − ε)
eε(1−) · u3.

(23)

For the magnetic field, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2ε
hε(−1/2+) × u3 = 1

2(1 − ε)
hε(−1/2−) × u3

1

2(1 − ε)
hε(1/2+) × u3 = 1

2ε
hε(1/2−) × u3

hε(1+) × u3 = 1

2(1 − ε)
hε(1−) × u3

(24)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2ε
hε(−1/2+) · u3 = ε

(1 − ε)
(hε(−1/2−) · u3 + χ(G)mε(−1/2−) · u3)

hε(1/2−) · u3 = ε

(1 − ε)
(hε(1/2+) · u3 + χ(G)mε(1/2+) · u3)

hε(1+) · u3 = 1

2(1 − ε)
(hε(1−) · u3 + χ(G)mε(1−) · u3).

(25)

The energy estimate (6) becomes

Eε(t) +
2α

1 + α2

∫ t

0

∫
G

|∂tm
ε(s)|2 dx ds � Eε(0), (26)

where the energy Eε(t) is expressed by

Eε(t) =
∫

G

aε|ĝrad mε|2 dx +
1

4(1 − ε)2

∫
G

aε|∂zm
ε|2 dx

− J

2(1 − ε)

∫
B

mε

(
−1

2

)
· mε

(
1

2

)
dx̂ +

∫
R3

−1

(ηε|eε|2 + |hε|2) dx. (27)

Our goal in the following subsections is to identify the limiting problem and characterize
the limiting electromagnetic field. We will assume the following strong convergences of the
rescaled electric conductivity and permittivity σ ε → σ, ηε → η.

3.2. Asymptotic behavior for a thin nonmagnetic spacer

We discuss the behavior of the solutions (mε, eε, hε) when ε → 0. In view of the energy
estimate (26), to get uniform bounds on the solutions we consider an initial data mε

0 which is

independent of z such that
∣∣mε

0

∣∣
H1(B)

� C and
∣∣mε

0(x̂)
∣∣2 = 1 a.e. We have the following result.

Theorem 3.1. Let (mε, eε, hε) be a global solution to (17)–(20). Let (m, e, h) be the weak-�
limit of a subsequence (mε, eε, hε) in L∞(R+, H1(G))×(L∞(R+, L2(R3

−1)))
2. Then (m, e, h)

satisfies in R+ × G the following equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tm − αm × ∂tm = −(1 + α2)m × H(m) in R+ × (G− ∪ G+),

m(0, x) = m0(x), ∂nm = 0 in ∂�\{z = ±1/2}
m(±1/2) × (∓a∂zm(±1/2) − 2Jm(∓1/2)) = 0 in B

H(m) = d̂iv(a ĝrad m) + 1
4∂z(a∂zm) + h,

(28)

where h is the limiting magnetic field.
7
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Proof. The behavior of the magnetization field obtained in [5] remains valid. We need in fact
to characterize the magnetic field h appearing in the effective field H. This will be done in
several steps. The energy estimate (26) allows us to deduce the following convergences.

Lemma 3.1. The solutions (eε, hε) satisfy (up to extract subsequences) the following
convergences:

(eε, hε) ⇀ (e, h) weakly in L2(R+; L2(R3
−1

))
. (29)

Now we pass to the limit in the transmission conditions (22)–(25) we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e0(−1/2+) × u3 = e0(−1/2+) · u3 = 0

e0(1/2−) × u3 = e0(1/2−) · u3 = 0

h0(−1/2+) × u3 = h0(−1/2+) · u3 = 0

h0(1/2−) × u3 = h0(1/2−) · u3 = 0

(30)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2e∞(1+) × u3 = e+(1−) × u3

2e∞(1+) · u3 = e+(1−) · u3

2h∞(1+) × u3 = h+(1−) × u3

2h∞(1+) · u3 = h+(1−) · u3 + χ(G)m+(1−) · u3.

(31)

We begin by the slab S0. We multiply equation (20), for ζ ε(z) = 1/2ε, by ε. We pass to the
limit when ε → 0 in the sense of distributions by using the weak convergences results (29).
We obtain

e0(0) = e0
0 and h0(0) = h0

0 in S0 (32)

∂z(h
0 × u3) = 0 and ∂z(e

0 × u3) = 0 in R+ × S0. (33)

Now we pass to the limit in the free divergence condition (21) to obtain

∂t∂z(ηe0 · u3) + ∂z(σe0 · u3) = 0 and ∂z(h
0 · u3) = 0 in R+ × S0. (34)

The equations (33) and (34) imply that

e0 · u3 = e0
0 · u3 exp

(
−σ

η
t

)
. (35)

We also conclude that the magnetic field h0 is independent of z, i.e.,

h0 = h0(t, x̂) almost everywhere (t, x̂). (36)

The third equality of equation (30) allows us to conclude that the magnetic field h vanishes
in the slab S0 since it is independent of z. On the other hand, the second equality of
equation (33) and the second equality of equation (30) give e0 = e0 · u3u3. From the
characterization (35) we deduce that

e0 = e0
0 · u3 exp

(
−σ

ρ
t

)
u3. (37)

We proved the following result.

Proposition 3.1. In R+ × S0, the magnetic field h0 vanishes and the electric field e0 is
characterized by (37).

8
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Now we pass to the limit in the slabs S±. We use the bounds on the solutions (mε, eε, hε). We
get⎧⎪⎨⎪⎩

∂t (ηe±) − ĉurl(h± · u3) − (ĉurl h±)u3 + 1
2∂z(h

± × u3) + σe± = 0

∂t (h
± + χ(G±)m±) + ĉurl(e± · u3) + (ĉurl e±)u3 − 1

2∂z(e
± × u3) = 0

e±(0) = e±
0 ; h±(0) = h±

0 ; e− × u3 = 0 at z = −1.

(38)

On the other hand, we pass to the limit in the free divergence conditions (21), we get{
∂t d̂iv(η̂e±) + 1

2∂t∂z(ηe± · u3) + d̂iv(σ ê±) + 1
2∂z(σe± · u3) = 0

d̂iv(̂h± + χ(G)m̂±) + 1
2∂z(h

± · u3 + χ(G±)m ± ·u3) = 0
(39)

in R+ × S±.

We proved the following result.

Proposition 3.2. In R+ ×S±, the couple (e±, h±) is characterized by equations (38) and (39).

Proposition 3.3. In R+ × S∞, the limiting electromagnetic field satisfies the usual Maxwell
system together with the corresponding compatibility conditions⎧⎪⎨⎪⎩

∂t (ηe∞) − curl h∞ + σe∞ = 0

∂t (h
∞) + curl e∞ = 0

e∞(0) = e∞
0 , h∞(0) = h∞

0

(40)

with {
∂tdiv(ηe∞) + div(σe∞) = 0

∂tdiv(h∞) = 0.
(41)

The characterization of the limiting electromagnetic field (e, h) is now complete
(propositions 3.1, 3.2 and 3.3), and so finishes up the proof of theorem 3.1. �

3.3. Asymptotic behavior for large nonmagnetic spacer

We now focus on the behavior of the solutions (mε, eε, hε) when ε → 1. We will pass to the
limit in the Maxwell system (20) and the transmission conditions (21). We apply the same
reasoning as above. In order to get uniform bounds on the solutions we consider an initial
data mε

0 ∈ H1(B) such that |mε
0(x̂)|2 = 1 and assume that the interlayer exchange coefficient

is such that J = j (1 − ε), j > 0. We have the following result.

Theorem 3.2. Let m± be the weak-� in L∞(R+; H1(G±)) of a subsequence of mε
|G± . Then the

couple (m+,m−) is independent of z and satisfies the saturation constraint |m±(t, x̂)|2 = 1
a.e. Moreover the couple (m+,m−) satisfies in R+ × B the following LLG equations:{

∂tm
± − αm± × ∂tm

± = −(1 + α2)m± × H±(m±)

m±(0, x̂) = m0(x̂), ∂nm
± = 0 on ∂B,

(42)

where the effective magnetic field H±(m±) is given by

H±(m±) = d̂iv(a±ĝrad m±) + h + jm± (43)

and h is the limiting magnetic field.
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Proof. We refer to [5] for the limiting behavior of magnetization. We intend to characterize
the limiting magnetic field h. This will be done in several steps. From the energy estimate
(26) we get the following convergences.

Lemma 3.2. The electromagnetic field satisfies{
(eε, hε) ⇀ (e, h) weakly- � in L∞(R+; L2(R3

−1

)
eε ⇀ e weakly in L2(R+, L2(�)).

(44)

Now we characterize the limit electromagnetic field in each infinite slab. First, we pass to the
limit (ε → 1) in the transmission conditions (22)–(25). For the electric field we have⎧⎪⎨⎪⎩

e−(−1/2−) × u3 = e−(1/2−) · u3 = 0

e+(1/2+) × u3 = e+(1/2+) · u3 = 0

e+(1−) × u3 = e+(1−) · u3 = 0.

(45)

For the magnetic field we have

h−(−1/2−) × u3 = h+(1/2+) × u3 = h+(1−) × u3 = 0 (46)

and ⎧⎪⎨⎪⎩
h−(−1/2−) · u3 + χ(G)m−(−1/2−) · u3 = 0

h+(1/2+) · u3 + χ(G)m+(1/2+) · u3 = 0

h+(1−) · u3 + χ(G)m+(1−) · u3 = 0.

(47)

Proposition 3.4. The couple (e0, h0) satisfies in R+ × S0 the following system:⎧⎪⎨⎪⎩
∂t (ηe0) − ĉurl(h0 · u3) − (ĉurl h0)u3 + 1

2∂z(h
0 × u3) + σe0 = 0

∂t (h
0) + ĉurl(e0 · u3) + (ĉurl e0)u3 − 1

2∂z(e
0 × u3) = 0

e0(0) = e0
0, h0(0) = h0

0

(48)

together with the divergence free condition{
d̂iv(η̂e0) + 1

2∂z(ηe0 · u3) = 0 in R+ × S0

d̂iv(̂h0) + 1
2∂z(h

0 · u3) = 0 in R+ × S0.
(49)

Proof. We pass to the limit in the sense of distributions when ε → 1 in equations (20) and
(21) by using the convergences (44). �

Consider now equations (20) in R+ × S±. We multiply them by 2(1 − ε) and pass to the limit,
in the sense of distributions. We obtain

∂z(h
± × u3) = 0 and ∂z(e

± × u3) = 0. (50)

Passing to the limit in the free divergence conditions we get

∂t (∂z(ηe± · u3)) + ∂z(σe± · u3) = 0

∂z(h
± · u3 + χ(G)m± · u3) = 0.

(51)

We integrate equalities (51) by using (45) and (46); we get the following characterization of
the limiting electromagnetic field in the ferromagnetic media.
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Proposition 3.5. In R+ × S±, the couple (e±, h±) is characterized by

e± = exp

(
−t

σ

η

) (
e±

0 · u3
)
u3 (52)

and

h± = −χ(ω)χ±(z)(m± · u3)u3, (53)

where χ±(z) is the characteristic function of (1/2, 1) and (−1,−1/2).

Finally, in the slab S∞, we get by taking the limit in (20) and (21).

Proposition 3.6. In R+ × S∞, the couple (e∞, h∞) satisfies the classical Maxwell system.

The characterization of the limiting electromagnetic field (e, h) is now complete
(propositions 3.4–3.6), and so finishes up the proof of theorem 3.2. �

4. Concluding remarks

We have explored the limiting behavior of the electromagnetic field in ferromagnetic
multilayers consisting of magnetic layers separated by nonmagnetic ones. We have devoted
this study to the coupling with perfect interfaces. It would be interesting to consider the
effects of nonmagnetic impurities and interface roughness on the interlayer coupling between
magnetic layers. Another direction for future research is to extend the results when the
contribution of biquadratic coupling to interlayer exchange coupling is considered.
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